persia.embedding.optim
Module Contents
- class persia.embedding.optim.Adagrad(lr=0.01, initial_accumulator_value=0.01, weight_decay=0, g_square_momentum=1, eps=1e-10, vectorwise_shared=False)
Bases:
Optimizer
A wrapper to config the embedding-server Adagrad optimizer.
- Parameters:
lr (float) – learning rate.
initial_accumulator_value (float, optional) – initialization accumulator value for adagrad optimizer.
weight_decay (float, optional) – parameters L2 penalty factor.
g_square_momentum (float, optional) – factor of accumulator incremental.
eps (float, optional) – epsilon term to avoid divide zero.
vectorwise_shared (bool, optional) – whether to share optimizer status vectorwise of embedding.
- class persia.embedding.optim.Adam(lr=0.001, betas=(0.9, 0.999), weight_decay=0, eps=1e-08)
Bases:
Optimizer
A wrapper to config the embedding-server Adam optimizer.
- Parameters:
lr (float) – learning rate.
betas (tuple[float,float], optional) – calculate the running averages of gradient and its square.
weight_decay (float, optional) – parameters L2 penalty factor.
eps (float, optional) – epsilon to avoid div zero.